首页 | 官方网站   微博 | 高级检索  
     

铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果
引用本文:杨婷婷,朱能武,芦昱,吴平霄. 铁氮掺杂碳纳米管/纤维复合物制备及其催化氧还原的效果[J]. 环境科学, 2016, 37(1): 350-358
作者姓名:杨婷婷  朱能武  芦昱  吴平霄
作者单位:华南理工大学环境与能源学院, 广州 510006;华南理工大学环境与能源学院, 广州 510006;工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006;华南理工大学环境与能源学院, 广州 510006;华南理工大学环境与能源学院, 广州 510006;工业聚集区污染控制与生态修复教育部重点实验室, 广州 510006
基金项目:国家自然科学基金项目(31272482);教育部新世纪优秀人才支持计划项目(NCET-11-0166);中央高校基本科研业务费专项(2014ZG015)
摘    要:阴极催化剂是影响微生物燃料电池(microbial fuel cell,MFC)性能的关键因素.通过研究制备成本低廉、氧还原反应(ORR)催化活性高的阴极催化剂来替代Pt/C对于实现MFC规模化应用具有重大意义.研究采用化学气相沉淀法,以三聚氰胺作为碳氮前驱物、以黑珍珠2000或乙炔炭黑作为碳源,外加醋酸亚铁作为铁前驱物,合成了两种铁氮掺杂碳纳米管/纤维复合物(FeNCB和FeNCC),作为MFC的阴极催化剂.通过循环伏安法和旋转圆盘-环电极分析FeNCB、FeNCC和Pt/C的ORR催化活性的差异,并用MFC验证其差异.结果表明,FeNCB性能与Pt/C相当,优于FeNCC,其催化路径是通过4电子途径催化氧还原反应;MFC-FeNCB性能略优于MFC-Pt/C,显著优于MFC-FeNCB有助于MFC的扩大化,其最大功率密度为1 212.8mW·m~(-2),开路电压为0.875 V,电池稳定电压为(0.500±0.025)V.用X射线衍射、X射线光电子光谱、拉曼光谱等进一步分析显示,复合物中碳纳米管管径的大小、铁氮掺杂的类型和含量以及氧含量是引起制备的复合物催化氧还原性能差异的原因所在.

关 键 词:微生物燃料电池  阴极催化剂  铁氮掺杂碳纳米管/纤维复合物  氧还原反应  低成本  扩大化
收稿时间:2015-07-25
修稿时间:2015-08-25

Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction
YANG Ting-ting,ZHU Neng-wu,LU Yu and WU Ping-xiao. Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction[J]. Chinese Journal of Environmental Science, 2016, 37(1): 350-358
Authors:YANG Ting-ting  ZHU Neng-wu  LU Yu  WU Ping-xiao
Affiliation:School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China;School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
Abstract:The cathode catalyst plays an important role in the electricity generation of microbial fuel cells (MFCs).In order to achieve the large-scale application of MFCs, cathode catalyst with low cost and high oxygen reduction reaction (ORR) has great sense to substitute the precious catalyst of Pt/C. Here chemical vapor deposition (CVD) method was utilized accompanied with melamine as a nitrogen and carbon precursor, oxidized carbon powder (Black Pearls 2000 or Acetylene Black) as carbon precursor and iron acetate as an iron precursor so as to synthesize two kinds of Fe and nitrogen doped carbon nanotube/nanoparticle composites (FeNCB and FeNCC) as MFCs cathode catalysts. The cyclic voltammetry and rotating ring-disk electrode were applied to analyze the ORR activity discrepancies of FeNCB, FeNCC, and Pt/C (20%), which was confirmed by MFC operation. The results showed that the ORR performance of FeNCB was slightly better than Pt/C and dramatically better than FeNCC. Moreover, the catalysis of ORR by FeNCB was through a four-electron transfer pathway. Besides, the performance of MFC-FeNCB was higher than MFC-Pt/C and observably higher than MFC-FeNCC which was a contribute to promote the scale of MFC. MFC-FeNCB achieved the maximum power output density of 1212.8 mW ·m-2, an open circuit potential of 0.875 V, and a stabilized voltage of (0.500±0.025) V. Further analysis via X-ray diffraction, X ray photoelectron spectroscopy, and Raman exhibited that the diameter of carbon nanotube, the types of N and Fe as well as the concentration of nitrogen, iron and oxygen was the reason for the discrepancies of ORR characteristics for the prepared catalysts.
Keywords:microbial fuel cell  cathodic catalyst  Fe/N-doped carbon nanotube/nanoparticle compound  oxygen reduction reaction  low cost  enlargement
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号