首页 | 官方网站   微博 | 高级检索  
     


Pyrite‐Based Bi‐Functional Layer for Long‐Term Stability and High‐Performance of Organo‐Lead Halide Perovskite Solar Cells
Authors:Bonkee Koo  Heesuk Jung  Minwoo Park  Jae‐Yup Kim  Hae Jung Son  Jinhan Cho  Min Jae Ko
Affiliation:1. Photo‐electronics Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul, Korea;2. Department of Chemical and Biological Engineering, Korea University, Seongbuk‐gu, Seoul, Korea;3. Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea;4. Green School, Korea University, Seongbuk‐gu, Seoul, Korea;5. KU‐KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
Abstract:Organo‐lead halide perovskite solar cells (PSCs) have received great attention because of their optimized optical and electrical properties for solar cell applications. Recently, a dramatic increase in the photovoltaic performance of PSCs with organic hole transport materials (HTMs) has been reported. However, as of now, future commercialization can be hampered because the stability of PSCs with organic HTM has not been guaranteed for long periods under conventional working conditions, including moist conditions. Furthermore, conventional organic HTMs are normally expensive because material synthesis and purification are complicated. It is herein reported, for the first time, octadecylamine‐capped pyrite nanoparticles (ODA‐FeS2 NPs) as a bi‐functional layer (charge extraction layer and moisture‐proof layer) for organo‐lead halide PSCs. FeS2 is a promising candidate for the HTM of PSCs because of its high conductivity and suitable energy levels for hole extraction. A bi‐functional layer based on ODA‐FeS2 NPs shows excellent hole transport ability and moisture‐proof performance. Through this approach, the best‐performing device with ODA‐FeS2 NPs‐based bi‐functional layer shows a power conversion efficiency of 12.6% and maintains stable photovoltaic performance in 50% relative humidity for 1000 h. As a result, this study has the potential to break through the barriers for the commercialization of PSCs.
Keywords:hole transport material  long‐term stability  organo‐lead halide perovskite solar cells  pyrite (FeS2) nanoparticles  surface hydrophobicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号