首页 | 官方网站   微博 | 高级检索  
     


Distinct roles of the N-terminal-binding domain and the C-terminal-solubilizing domain of alpha-synuclein,a molecular chaperone
Authors:Park Sang Myun  Jung Han Young  Kim Thomas D  Park Jeon Han  Yang Chul-Hak  Kim Jongsun
Affiliation:Department of Microbiology and Brain Korea 21 Project of Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Korea.
Abstract:alpha-Synuclein, an acidic neuronal protein of 140 amino acids, is extremely heat-resistant and is natively unfolded. Recent studies have demonstrated that alpha-synuclein has chaperone activity both in vitro and in vivo, and that this activity is lost upon removing its C-terminal acidic tail. However, the detailed mechanism of the chaperone action of alpha-synuclein remains unknown. In this study, we investigated the molecular mechanism of the chaperone action of alpha-synuclein by analyzing the roles of its N-terminal and C-terminal domains. The N-terminal domain (residues 1-95) was found to bind to substrate proteins to form high molecular weight complexes, whereas the C-terminal acidic tail (residues 96-140) appears to be primarily involved in solubilizing the high molecular weight complexes. Because the substrate-binding domain and the solubilizing domain for chaperone function are well separated in alpha-synuclein, the N-terminal-binding domain can be substituted by other proteins or peptides. Interestingly, the resultant engineered chaperone proteins appeared to display differential efficiency and specificity in terms of the chaperone function, which depended upon the nature of the binding domain. This finding implies that the C-terminal acidic tail of alpha-synuclein can be fused with other proteins or peptides to engineer synthetic chaperones for specific purposes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号