首页 | 官方网站   微博 | 高级检索  
     


Self-sustaining hybrid electrode prepared from polyaniline,carbon nanotubes,and carbon fibers: morphological,structural, and electrochemical analyses
Authors:D. A. L. Almeida  E. R. Edwards  N. G. Ferreira
Affiliation:1.Laboratório Associado de Sensores e Materiais,Instituto Nacional de Pesquisas Espaciais – INPE,S?o José dos Campos,Brazil
Abstract:The self-sustaining hybrid electrode was prepared via chemical polymerization of aniline in acid medium containing dispersed carbon nanotubes (CNT), using carbon fiber (CF) as conducting substrate. The ternary composites called PAni/CNT/CF were characterized in order to evaluate their morphologies, structures, and thermal properties. The influence of the polyaniline (PAni) layer in the ternary composite properties was studied considering different deposition times on CF samples (30, 60, and 90 min). The ternary composite morphologies were observed by scanning electron microscopy while thermal structural analyses were obtained using thermogravimetric measurements. The structural features were analyzed by Raman scattering spectroscopy and Fourier transform infrared spectroscopy (FTIR). The possible interactions between PAni and CNT were discussed on the basis of Raman and FTIR spectra. These spectroscopic analyses also confirmed that the PAni present in the composite is in the emeraldine (ES) salt form. Furthermore, the ternary composites were also evaluated by electrochemical measurements such as cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) techniques. The results showed good charge storage capacity for ternary composites, in particular, for PAni/CNT/CF obtained with 90 min of deposition time, which exhibited specific capacitance of around 500 F g?1. Therefore, this electrode was selected to build a prototype of type I supercapacitor. This device presented specific capacitance of around 143 F g?1 after 3200 charge/discharge cycles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号