首页 | 官方网站   微博 | 高级检索  
     


TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning
Authors:Wanqi Yang  Yang Gao  Longbing Cao
Affiliation:1. State Key Laboratory for Novel Software Technology, Nanjing University, China;2. Advanced Analytics Institute, University of Technology Sydney, Australia
Abstract:Local anomaly detection refers to detecting small anomalies or outliers that exist in some subsegments of events or behaviors. Such local anomalies are easily overlooked by most of the existing approaches since they are designed for detecting global or large anomalies. In this paper, an accurate and flexible three-phase framework TRASMIL is proposed for local anomaly detection based on TRAjectory Segmentation and Multi-Instance Learning. Firstly, every motion trajectory is segmented into independent sub-trajectories, and a metric with Diversity and Granularity is proposed to measure the quality of segmentation. Secondly, the segmented sub-trajectories are modeled by a sequence learning model. Finally, multi-instance learning is applied to detect abnormal trajectories and sub-trajectories which are viewed as bags and instances, respectively. We validate the TRASMIL framework in terms of 16 different algorithms built on the three-phase framework. Substantial experiments show that algorithms based on the TRASMIL framework outperform existing methods in effectively detecting the trajectories with local anomalies in terms of the whole trajectory. In particular, the MDL-C algorithm (the combination of HDP-HMM with MDL segmentation and Citation kNN) achieves the highest accuracy and recall rates. We further show that TRASMIL is generic enough to adopt other algorithms for identifying local anomalies.
Keywords:Local anomaly detection  Trajectory segmentation  Trajectory representation  Multi-instance learning  HDP-HMM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号