首页 | 官方网站   微博 | 高级检索  
     


Vitamin A microencapsulation within poly(methyl methacrylate)‐g‐polyethylenimine microspheres: Localized proton buffering effect on vitamin A stability
Authors:Jong Suk Lee  Yoon Sung Nam  Byung‐Young Kang  Sang‐Hoon Han  Ih‐Seop Chang
Abstract:To stabilize vitamin A in a cosmetic/dermatological formulation, we present here a new encapsulation method based on polymer microspheres having a localized “proton‐buffering” capacity. Poly(methyl methacrylate)‐g‐polyethylenimine (PMMA‐g‐PEI) was prepared by direct condensation grafting of PEI onto poly(methyl methacrylate‐co‐methyl acrylic acid). The reaction was confirmed by FT‐IR analysis showing the amide vibration at 1,550 cm?1. Elemental analysis indicated that the weight content of the grafted PEI was 1.6% (w/w). Vitamin A was encapsulated into PMMA‐g‐PEI microspheres by using an oil‐in‐water (O/W) single emulsion method. The presence of PEI moiety dramatically improved the chemical stability of vitamin A in microspheres. Vitamin A encapsulated within PMMA‐g‐PEI microspheres maintained 91% of its initial activity after 30‐day incubation at 40°C, while only maintaining 60% within plain PMMA microspheres. This study demonstrates that proton‐buffering within hydrophobic polymer matrix is a useful strategy for stabilizing “acid‐labile” active ingredients. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 517–522, 2004
Keywords:graft copolymers  microencapsulation  stabilization  functionalization of polymers  polyimines
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号