首页 | 官方网站   微博 | 高级检索  
     


Microstructures and properties of cold drawn and annealed submicron crystalline Cu-5%Cr alloy
Authors:HE Wen-xiong  YU Yang  WANG Er-de  SUN Hong-fei  HU Lian-xi  CHEN Hui
Affiliation:School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:The microstructures and properties after cold drawing and subsequent annealing of submicron crystalline Cu-5%Cr (mass fraction) alloy were investigated. The results show that, the microstructure of submicron crystalline Cu-5%Cr can be further refined by cold drawing. After cold drawing, the grains of Cu-5%Cr alloy with grain size of 400-500 nm can be refined to be cellular structures and subgrains with size of 100-200 nm. Both strength and ductility of Cu-5%Cr alloy can be enhanced by cold drawing, and the optimal mechanical properties can be achieved with drawing deformation increasing. It is suggested that dislocation glide is still the main mechanism in plastic deformation of submicron crystalline Cu-5%Cr, but grain boundary slide and diffusion may play more and more important roles with drawing deformation increasing. When the cold drawn Cu-5%Cr wires are annealed at 550 ℃, fine recrystal grains with grain size of 200-300 nm can be obtained. Furthermore, there are lots of fine Cr particles precipitated during annealing, by which the recrystallization softening temperatures of the cold drawn Cu-5%Cr wires can be increased to 480-560 ℃. Due to the fact that Cr particles have the effect of restricting Cu grains growth, a favorable structural thermal stability of the submicron crystalline Cu-5%Cr can be achieved, and the submicron grained microstructure can be retained at high temperature annealing.
Keywords:submicron crystalline  cold drawing  recrystallization  thermal stability
本文献已被 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号