首页 | 官方网站   微博 | 高级检索  
     


Influence of deposition voltage on phase, microstructure and antioxidation property of cristobalite aluminum phosphate coatings
Authors:Wen-dong Yang  Jian-feng Huang  Li-yun Cao and Xie-rong Zeng
Affiliation:(1) School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi, 710021, People’s Republic of China
Abstract:Cristobalite aluminum phosphate (C-AlPO4) coatings were prepared by a hydrothermal electrophoretic deposition process on SiC-coated C/C composites. Phase compositions and microstructures of the as-prepared coatings were characterized by XRD and SEM analyses. The influence of deposition voltage on the phase, microstructure and antioxidation property of the cristobalite aluminum phosphate coatings was investigated. Results show that the as-prepared coatings are composed of cristobalite aluminum phosphate crystallites. The thickness and density of cristobalite aluminum phosphate coatings are improved with the increase of deposition voltage. The deposition amount and bonding strength of the cristobalite aluminum phosphate coatings also increase with the increase of deposition voltage. The deposition mass per unit area of the coatings and the square root of the deposition time at different hydrothermal voltages satisfy linear relationship. The antioxidation property of the coated C/C composites is improved with the increase of deposition voltage. Compared with SiC coatings prepared by pack cementation, the multilayer coatings prepared by pack cementation with a later hydrothermal electrophoretic deposition process exhibit better antioxidation property. The as-prepared multi-coatings can effectively protect C/C composites from oxidation in air at 1 773 K for 37 h with a mass loss rate of 0.53%.
Keywords:carbon/carbon composites  aluminum phosphate  hydrothermal electrophoretic deposition  deposition voltage  microstructure  antioxidation
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号