基于运动相关皮层电位握力运动模式识别研究 |
| |
引用本文: | 伏云发, 徐保磊, 李永程, 李洪谊, 王越超, 余正涛. 基于运动相关皮层电位握力运动模式识别研究. 自动化学报, 2014, 40(6): 1045-1057. doi: 10.3724/SP.J.1004.2014.01045 |
| |
作者姓名: | 伏云发 徐保磊 李永程 李洪谊 王越超 余正涛 |
| |
作者单位: | 1.昆明理工大学信息工程与自动化学院 昆明 650500;;;2.中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016;;;3.中国科学院大学 北京 100049 |
| |
基金项目: | 国家自然科学基金青年基金(60705021),云南省应用基础研究计划项目(2013FB026),云南省级人培项目(KKSY201303048),云南省教育厅重点项目(2013Z130)资助 |
| |
摘 要: | 面向基于脑-机接口(Brain-computer interface,BCI)的脑-机交互控制(Brain-machine interaction control,BMIC)——直接脑控机器人,提出一种新的左、右手握力运动参数范式,在该范式下探索左、右手握力运动相关皮层电位/运动相关电位(Movement-related potentials,MRPs)的时域特征表示并识别握力运动模式.在涉及左、右手4个不同任务的实验中采集了11个健康被试的脑电信号,任务期间要求被试以2种握力变化模式之一完成自愿握力运动,每种任务随机重复30次.不同握力任务之间具有显著差异的运动相关电位特征用于识别握力运动模式.分别用基于核的Fisher线性判别分析和支持向量机识别4个不同的握力运动任务.研究结果进一步证实运动相关电位可以表征握力运动规划、运动执行和运动监控的脑神经机制过程.基于核的Fisher线性判别分析和支持向量机分别获得24±4%和21±5%的平均错误分类率.最小误分类率是12%,所有被试平均最小误分类率为20.9±5%.与传统的仅仅识别参与运动的肢体类型以及识别单侧肢体运动参数的研究相比,本研究可望为脑-机交互控制/脑控机器人接口提供更多的力控制意图指令,奠定了后续的对比研究基础.
|
关 键 词: | 运动相关电位 握力运动模式 支持向量机 脑-机接口 脑-机交互控制 脑控机器人接口 |
收稿时间: | 2012-12-13 |
修稿时间: | 2013-08-01 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《自动化学报》浏览原始摘要信息 |
|
点击此处可从《自动化学报》下载免费的PDF全文 |
|