首页 | 官方网站   微博 | 高级检索  
     


Molecular Stacking Induced by Intermolecular C–H···N Hydrogen Bonds Leading to High Carrier Mobility in Vacuum‐Deposited Organic Films
Authors:Daisuke Yokoyama  Hisahiro Sasabe  Yukio Furukawa  Chihaya Adachi  Junji Kido
Affiliation:1. Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, 4‐3‐16 Johnan, Yonezawa, Yamagata 992–8510, Japan and Center for Future Chemistry, Kyushu University, 774 Motooka, Nishi, Fukuoka 819–0395, Japan;2. Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, 4‐3‐16 Johnan, Yonezawa, Yamagata 992–8510, Japan;3. Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3‐4‐1 Okubo, Shinjuku, Tokyo 169–8555, Japan;4. Center for Future Chemistry, Kyushu University, 774 Motooka, Nishi, Fukuoka 819–0395, Japan
Abstract:Simple bottom‐up fabrication processes for molecular self‐assembly have been developed for the construction of higher‐order structures using organic materials, and have contributed to maximization of the potential of organic materials in chemical and bioengineering. However, their application to organic thin‐film devices such as organic light‐emitting diodes have not been widely considered because simple fabrication of a solid film containing an internal self‐assembly structure has been regarded as difficult. Here it is shown that the intermolecular C–H···N hydrogen bonds can be simply formed even in vacuum‐deposited organic films having flat interfaces. By designing the molecules containing pyridine rings properly for the intermolecular interaction, one can control the molecular stacking induced by the intermolecular hydrogen bonds. It is also demonstrated that the molecular stacking contributes to the high carrier mobility of the film. These findings provide new guidelines to improve the performance of organic optoelectronic devices and open up the possibilities for further development of organic devices with higher‐order structures.
Keywords:Intermolecular hydrogen bonds  Self‐assembly  Molecular orientation  Carrier mobilities  Organic light‐emitting diodes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号