首页 | 官方网站   微博 | 高级检索  
     


Pore microgeometry analysis in low-resistivity sandstone reservoirs
Authors:Adrian Cerepi   Claudine Durand  Etienne Brosse
Abstract:The objective of this work is to analyse the pore microgeometry and its effect on petrophysical properties in six low-resistivity sandstone reservoirs by combining a 2D quantitative petrographic image analysis (PIA) and 3D petrophysical tools. The classic petrophysical tools enable the measurement of different classic reservoir properties such as specific surface area, average pore diameter, pore size distribution, macroporosity and microporosity, capillary pressure versus saturation, pore chamber–pore throat diameter ratio, electrical properties and permeability. The petrographic image analysis quantifies pore microgeometry in more than four orders of magnitude, from submicron to millimeter scale. Chloritic low-resistivity sandstones show dual porosity structure defined as chloritic texture. The pore microgeometrical parameters measured by petrographic image analysis allow one to model different reservoir properties such as capillary pressure, permeability and electrical behaviour. The results obtained in these models show that pore microgeometry plays an important role in the physical properties of low-resistivity sandstone reservoirs.
Keywords:Chlorite   Low-resistivity sandstones   Mercury porosimetry   Permeametry   Petrographic image analysis   Porous medium
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号