首页 | 官方网站   微博 | 高级检索  
     


A new method for camera stratified self-calibration under circular motion
Authors:Xiao Lu  Yaonan Wang  Haixia Xu  Xuanyu Zhou  Ke Zhao
Affiliation:1. College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China
2. College of Information Engineering, Xiangtan University, Xiangtan, 411105, China
3. Computer School, Wuhan University, Wuhan, 430072, China
Abstract:We consider the stratified self-calibration (affine and metric reconstruction) problem from images acquired with a camera with unchanging internal parameters undergoing circular motion. The general stratified method (modulus constraints) is known to fail with this motion. In this paper we give a novel constraint on the plane at infinity in projective reconstruction for circular motion, the constant inter-frame motion constraint on the plane at infinity between every two adjacent views and a fixed view of the motion sequences, by making use of the facts that in many commercial systems rotation angles are constant. An initial solution can be obtained by using the first three views of the sequence, and Stratified Iterative Particle Swarm Optimization (SIPSO) is proposed to get an accurate and robust solution when more views are at hand. Instead of using the traditional optimization algorithm as the last step to obtain an accurate solution, in this paper, the whole motion sequence information is exploited before computing the camera calibration matrix, this results in a more accurate and robust solution. Once the plane at infinity is identified, the calibration matrices of the camera and a metric reconstruction can be readily obtained. Experiments on both synthetic and real image sequence are given, showing the accuracy and robustness of the new algorithm.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号