首页 | 官方网站   微博 | 高级检索  
     


Direct ammonia solid-oxide fuel cells: A review of progress and prospects
Affiliation:1. CSIRO Energy, Private Bag 10, Clayton South, 3169, Victoria, Australia;2. Department of Chemical Engineering, Monash University, Melbourne, Victoria, Australia
Abstract:With the rapidly declining cost of renewable energy, efficient ways are needed for its transportation between different regions. Hydrogen is becoming a major energy vector, with the key challenges of its storage and transportation commonly overcome by using ammonia for chemical storage of hydrogen energy. Ammonia, which is more energy dense than hydrogen and easier to transport, is a carbon-free alternative fuel that can be used in a variety of ways to generate power. Owing to their robustness and efficiency, solid-oxide fuel cells (SOFC) stand out as one of the most promising technologies that convert ammonia to electricity. Unlike other fuel cells, such as polymer electrolyte membranes, SOFCs do not require the fuel to be cleaned by energy-intensive external cracking and extensive cleaning; their high operating temperature provides the flexibility to crack the ammonia inside the anode or to use it directly. Here, we discuss experimental and numerical studies of ammonia SOFCs and critically review the status and opportunities for ammonia-fuelled SOFC technology. In the first section, we briefly outline the potential cathode and electrolyte materials for SOFCs. Only the anode component poses additional challenges with ammonia over the well-established hydrogen-fuelled SOFC technology, and this topic has been addressed in detail. Anode catalysts for ammonia decomposition, parameters affecting ammonia decomposition and anode catalyst degradation are also discussed. In the second section, we review the modelling studies for ammonia SOFCs. Finally, we run through the major commercial initiatives and demonstrations in green ammonia production and ammonia SOFCs.
Keywords:SOFC  Ammonia  Gas to power  Renewable energy  Fuel cell  Hydrogen
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号