首页 | 官方网站   微博 | 高级检索  
     


On Derivation of Motion Equations for Systems with Non-Holonomic High-Order Program Constraints
Authors:Jarzebowska  Elzbieta
Affiliation:(1) Institute of Aircraft Engineering and Applied Mechanics, Aerospace Department, Warsaw University of Technology, Nowowiejska 22/24, 00-655 Warsaw, Poland
Abstract:The paper develops and discusses the generalization of modeling methods for systems with non-holonomic constraints. The classification of constraints has been revisited and a concept of program constraints introduced. High-order non-holonomic constraints (HONC), as presented in examples, are the generalization of the constraint concept and may, as a constraint class, include many of motion requirements that are put upon mechanical systems. Generalized program motion equations (GPME) that have been derived in the paper can be applied to systems with HONC. Concepts of virtual displacements and a generalized variational principle for high-order constraints are presented. Classical modeling methods for non-holonomic systems based on Lagrange equations with multipliers, Maggi, Appell–Gibbs, Boltzman–Hamel, Chaplygin and others are peculiar cases of GPME. The theory has been illustrated with examples of high-order constraints. Motion equations have been derived for a system subjected to a constraint that programmed a trajectory curvature profile. Efficiency, advantages and disadvantages of GPME have been discussed.
Keywords:non-holonomic high-order constraints  program constraints  generalized program motion equations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号