首页 | 官方网站   微博 | 高级检索  
     


Reaction Between Ethylene and Acetate Species on Clean and Oxygen-Covered Pd(100): Implications for the Vinyl Acetate Monomer Formation Pathway
Authors:Florencia Calaza  Zhenjun Li  Wilfred T Tysoe
Affiliation:(1) Laboratory for Surface Studies, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
Abstract:

Abstract  

The reaction between gas-phase ethylene and adsorbed acetate species on Pd(100)-p(2 × 2)-O and Pd(100)-c(2 × 2)-O surfaces is studied using infrared spectroscopy. It is found that acetate species are removed more rapidly by gas-phase ethylene on oxygen-covered Pd(100) than on Pd(111). However, in contrast to reaction on Pd(111), where vinyl acetate monomer (VAM) formation is detected by infrared spectroscopy, only CO is found on oxygen-covered Pd(100) surfaces. In the case of Pd(111), it has been shown that VAM is stabilized on the crowded, ethylidyne-covered surface. Since ethylidyne species do not form on Pd(100), any VAM that is formed can thermally decompose. The reaction shows an isotope effect when C2D4 is substituted for C2H4, indicating the hydrogen is involved in the rate-limiting step. Based on the surface chemistry found for VAM on a Au/Pd(111) alloy, where 30 to 40% ML of gold inhibits VAM decomposition, it is suggested that the VAM formation rate will increase on (100) alloy surfaces, while it will decrease at higher gold coverages since acetate formation is inhibited.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号