首页 | 官方网站   微博 | 高级检索  
     


Autofrettage process analysis of a compound cylinder based on the elastic-perfectly plastic and strain hardening stress-strain curve
Authors:Eun-Yup Lee  Young-Shin Lee  Qui-Ming Yang  Jae-Hoon Kim  Ki-Up Cha  Suk-Kyun Hong
Affiliation:(1) BK21 Mechatronics Groups, Dept. of Mechanical Design Engineering, Chungnam National University, 220 Kung-dong Yuseong-gu, Daejeon, 305-764, Korea;(2) Propulsive Group, Agency of Defense Development, Yuseong, P.O. Box 35, Daejeon, 305-301, Korea
Abstract:The autofrettage process enhances the carrying capacity and fatigue lifetime of pressure vessels by increasing their residual stress. A compound cylinder was introduced in order to increase residual stress. An autofrettaged compound cylinder can resist a higher pressure than a single cylinder having the same dimension. This residual stress can be measured through experimental or calculation processes. In this study, residual stress analysis of an autofrettaged compound cylinder was conducted. The elastic-perfectly plastic and strain hardening models were investigated. The residual stress distribution of the autofrettaged compound cylinder with shrink fit tolerance was predicted. Shrink fit is a very efficient way to extend compressive residual stress. The compressive residual stress of the strain-hardening model is smaller than that of the elastic-perfectly plastic model because of the Bauschinger effect. The compressive residual stress of the strain hardening model decreased by up to 80% overstrain level.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号