首页 | 官方网站   微博 | 高级检索  
     

新型拉压复合型锚杆锚固性能研究Ⅲ:现场试验
引用本文:涂兵雄,蔡燕燕,何锦芳,俞缙,许国平,程强.新型拉压复合型锚杆锚固性能研究Ⅲ:现场试验[J].岩土工程学报,2019,41(5):846-854.
作者姓名:涂兵雄  蔡燕燕  何锦芳  俞缙  许国平  程强
作者单位:1. 华侨大学福建省隧道与城市地下空间工程技术研究中心,福建 厦门 361021;2. 福建省建筑科学研究院有限责任公司,福建 福州 350025;3. 厦门源昌城建集团有限公司,福建 厦门 361004
基金项目:国家自然科学基金项目(51408242,51678112,51774147); 中国博士后科学基金项目(2016M592082)
摘    要:针对传统拉力型锚杆存在受力集中、锚固体与岩土体界面黏结强度发挥不充分、抗拔承载力偏低的问题,研发了一种新型拉压复合型锚杆。通过开展现场破坏性试验,对拉力型锚杆及拉压复合型锚杆的承载能力、荷载位移曲线及应变数据进行分析,结果表明:3组拉压复合型锚杆TC12-3、TC11-1、TC21锚杆的平均破坏荷载分别提高至拉力型锚杆的2.81,2.01,2.52倍;拉压复合型锚杆套管内的拉力传递损失率最大为20.5%,在自由段内的拉力传递损失率最大仅为6.8%,拉力传递损失主要发生在承压锚固段上;TC12-3锚杆的受拉锚固段长度最短,单位受拉锚固段长度分担荷载最高;TC21-1锚杆的承压锚固段最短,单位承压锚固段长度分担荷载最高;锚杆破坏时,TC12-3、TC11-1、TC21-1锚杆的受拉承载系数分别为0.398,0.470,0.600;且TC11-1锚杆表现为承压锚固段与受拉锚固段同时破坏,TC12-3、TC21-1锚杆表现为先后破坏;拉压复合型锚杆锚固性能显著提高主要是由于荷载分解作用,界面剪应力双向传递机制及短锚承载效应;从荷载位移曲线来看,拉压复合型锚杆具有较好的抗变形能力,在岩土锚固工程中,具有显著的优势和广阔的应用前景。

关 键 词:拉压复合型锚杆  现场试验  荷载位移曲线  受拉承载系数  
收稿时间:2018-08-09

Analysis of anchorage performance on new tension-compression anchor Ⅲ field test
TU Bing-xiong,CAI Yan-yan,HE Jin-fang,YU Jin,XU Guo-ping,CHENG Qiang.Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J].Chinese Journal of Geotechnical Engineering,2019,41(5):846-854.
Authors:TU Bing-xiong  CAI Yan-yan  HE Jin-fang  YU Jin  XU Guo-ping  CHENG Qiang
Affiliation:1. Fujian Engineering Technology Research Center for Tunnel and Underground Space, Huaqiao University, Xiamen 361021, China; 2. Fujian Academy of Building Research Co., Ltd., Fuzhou 350025, China; 3. Xiamen Yuanchang Urban Construction Group Co., Ltd., Xiamen 361004, China
Abstract:The new tension-compression composite anchor (TC-anchor) is developed to overcome the shortcomings of the traditional tension anchor (T-anchor), such as stress concentration, insufficient bonding strength between anchorage body and soil mass, and low uplift bearing capacity. The bearing capacity, load-displacement curves and strain data of T-anchor and TC-anchor are analyzed, based on the field destructive tests. The results show that the average destructive loads of three groups of TC-anchor, TC12 -3, TC11-1 and TC21, increase to 2.81, 2.01, 2.52 times those of T-anchor, respectively. The maximum tension loss rate in the rebar hole is 20.5% and only 6.8% along the free anchorage length, and therefore the tension loss occurs mainly along the compression anchorage body (CAB). The tension anchorage body (TAB) length of TC12-3 anchor is the shortest, and therefore the bearing loads of unit TAB length are the highest. The CAB length of TC21-1 anchor is the shortest, and therefore the bearing loads of unit CAB length are the highest. When the anchor is destructed, the tension bearing coefficients of TC12-3, TC11-1, TC21-1 are 0.398, 0.470, 0.600, respectively, and the CAB and TAB of TC11-1 are destructed at the same time, while those of TC12-3 and TC21-1 are destructed successively. The significantly increased anchorage performance of TC-anchor is mainly due to the decomposition of the loads, the two-way transmission mechanisms of the interface shear stress and the bearing effect of short anchor. It can be seen from the load-displacement curves that the TC-anchor has better deformation-resisting capability. Therefore, it has significant advantages and broad application prospects in geotechnical anchorage engineering.
Keywords:tension-compression composite anchor  field test  load-displacement curve  tension bearing coefficient  
点击此处可从《岩土工程学报》浏览原始摘要信息
点击此处可从《岩土工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号