首页 | 官方网站   微博 | 高级检索  
     


A study of the mechanical properties of short natural-fiber reinforced composites
Authors:PJ Herrera-Franco  A Valadez-Gonzlez
Affiliation:

Centro de Investigación Científica, de Yucatán A.C., Division de Materiales, Calle 43 # 130, Col. Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán, México

Abstract:The degree of fiber–matrix adhesion and its effect on the mechanical reinforcement of short henequen fibers and a polyethylene matrix was studied. The surface treatments were: an alkali treatment, a silane coupling agent and the pre-impregnation process of the HDPE/xylene solution. The presence of Si–O–cellulose and Si–O–Si bonds on the lignocellulosic surface confirmed that the silane coupling agent was efficiently held on the fibres surface through both condensation with cellulose hydroxyl groups and self-condensation between silanol groups.

The fiber–matrix interface shear strength (IFSS) was used as an indicator of the fiber–matrix adhesion improvement, and also to determine a suitable value of fiber length in order to process the composite with relative ease. It was noticed that the IFSS observed for the different fiber surface treatments increased and such interface strength almost doubled only by changing the mechanical interaction and the chemical interactions between fiber and matrix.

HDPE-henequen fiber composite materials were prepared with a 20% v/v fiber content and the tensile, flexural and shear properties were studied. The comparison of tensile properties of the composites showed that the silane treatment and the matrix-resin pre-impregnation process of the fiber produced a significant increase in tensile strength, while the tensile modulus remained relatively unaffected. The increase in tensile strength was only possible when the henequen fibers were treated first with an alkaline solution. It was also shown that the silane treatment produced a significant increase in flexural strength while the flexural modulus also remained relatively unaffected. The shear properties of the composites also increased significantly, but, only when the henequen fibers were treated with the silane coupling agent. Scanning electron microscopy (SEM) studies of the composites failure surfaces also indicated that there is an improved adhesion between fiber and matrix. Examination of the failure surfaces also indicated differences in the interfacial failure mode. With increasing fiber–matrix adhesion the failure mode changed from interfacial failure and considerable fiber pull-out from the matrix for the untreated fiber to matrix yielding and fiber and matrix tearing for the alkaline, matrix-resin pre-impregnation and silane treated fibers.

Keywords:(C)Resin  Fiber–matrix
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号