首页 | 官方网站   微博 | 高级检索  
     


RLS-based adaptive algorithms for generalized eigen-decomposition
Authors:Jian Yang Hongsheng Xi Feng Yang Yu Zhao
Affiliation:Dept. of Autom., Univ. of Sci. & Technol. of China, Anhui, China;
Abstract:The aim of this paper is to develop efficient online adaptive algorithms for the generalized eigen-decomposition problem which arises in a variety of modern signal processing applications. First, we reinterpret the generalized eigen-decomposition problem as an unconstrained minimization problem by constructing a novel cost function. Second, by applying projection approximation method and recursive least-square (RLS) technique to the cost function, a parallel adaptive algorithm for a basis for the r-dimensional (r>0) dominant generalized eigen-subspace and a sequential algorithm based on deflation technique for the first r-dominant generalized eigenvectors are derived. These algorithms can be viewed as counterparts of the extended projection approximation subspace tracking (PAST) and PASTd algorithms, respectively. Furthermore, we modify the parallel algorithm to explicitly estimate the first r-generalized eigenvectors in parallel, not the generalized eigen-subspace. More important, the modified parallel algorithm can be used to extract multiple generalized eigenvectors of two nonstationary sequences, while the proposed sequential algorithm lacks this ability because of slow convergence of minor generalized eigenvectors due to error propagation of the deflation technique. Third, following convergence analysis methods for PAST and PASTd, we prove the asymptotic convergence properties of the proposed algorithms. Finally, computer simulations are performed to investigate the accuracy and the speed advantages of the proposed algorithms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号