首页 | 官方网站   微博 | 高级检索  
     


The effect of arrangement of two circular cylinders on the maximum efficiency of Vortex-Induced Vibration power using a Scale-Adaptive Simulation model
Affiliation:1. RWDI Anemos Ltd, Dunstable, UK;2. Centre for Aeronautics, City University, London, UK;1. Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China, College of Power Engineering, Chongqing University, Chongqing, China;2. Marine Renewable Energy Laboratory, Dept. of Naval Architecture & Marine Engineering, University of Michigan, Ann Arbor, MI, USA;3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA;4. Vortex Hydro Energy, Ann Arbor, MI, USA;5. College of Resources and Environmental Science, Chongqing University, Chongqing, China
Abstract:The complex behaviour of an unsteady flow around two circular cylinders in tandem is of interest for many civil engineering applications across a wide range of aerospace, mechanical and marine applications. The present paper analyses Vortex-Induced Vibration (VIV) for the flow around two circular cylinders. It has been shown that the amount of kinetic energy which can be captured by VIV is a function of the arrangement of the two cylinders. The upstream cylinder is fixed while the downstream is mounted elastically with one degree of freedom normal to the mean flow direction. The efficiency of the VIV power obtained from downstream cylinder is compared for different arrangement of the cylinders. For this purpose, the longitudinal and lateral distances between the cylinders were varied and the Reynolds number was kept constant. Scale-Adaptive Simulation (SAS) and Shear Stress Transport (SST) CFD models are utilized to analyse the validity of the SAS turbulence model. The results indicate that both turbulence models predict the flow characteristics around the cylinders with reasonable precision; however, the predictions from SAS were more accurate compared to the SST. Based on this comparison, SAS model was chosen as a tool to analyse the VIV response of the downstream cylinder. The location of the downstream cylinder has been altered in the wake of upstream one in order to obtain the optimum efficiency of the VIV power. The results reveal that the arrangement of the cylinders can significantly change the efficiency. It is also observed that cylinders offset from one another show a higher efficiency compared to cylinders with their centres aligned.
Keywords:VIV  Vortex shedding  Scale Adaptive Simulation  Shear Stress Transport  Two tandem cylinders
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号