首页 | 官方网站   微博 | 高级检索  
     


Lattice-structured SiC ceramics obtained via 3D printing,gel casting,and gaseous silicon infiltration sintering
Affiliation:1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China;2. National Innovation Institute of Defense Technology, Academy of Military Science PLA, Beijing 100071, China
Abstract:In view of technical difficulties in preparing ceramics with complex shapes, gel casting combined with 3D printing was here adopted to prepare silicon carbide ceramic green body, and gaseous silicon infiltration sintering was used to prepare 3D lattice-structured ceramics. The preparation of the slurry, gel curing, and ceramic molding was investigated. Results demonstrate that the ratio of components affects the fluidity and stability of slurry. However, when volume fraction of the solid phase of the slurry reaches 56%, the viscosity of slurry is only 300 mPa s, and drying shrinkage rate of green body is 6.6%; these characteristics make slurry suitable for 3D complex model injection molding. Furthermore, both the temperature and the initiator affect gel curing speed. As the temperature and initiator content increase, the induction and gel time are rapidly shortened. When demolding at 300 °C and when gaseous silicon infiltration sintering is carried out at 1550 °C, a 3D lattice-structured ceramic with relative density of 87% and average compressive strength of 433 MPa can be obtained.
Keywords:Silicon carbide  Gel casting  Polymerization reaction  Gaseous silicon infiltration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号