首页 | 官方网站   微博 | 高级检索  
     


Mathematical topographical correction of XPS images using multivariate statistical methods
Abstract:For rough heterogeneous samples, the contrast observed in XPS images may result from both changes in elemental or chemical composition and sample topography. Background image acquisition and subtraction are frequently utilized to minimize topographical effects so that images represent concentration variations in the sample. This procedure may significantly increase the data acquisition time. Multivariate statistical methods can assist in resolving topographical and chemical information from multispectral XPS images. Principal component analysis (PCA) is one method for identification of the highest correlation/variation between the images. Topography, which is common to all of the images, will be resolved in the first most significant component. The score of this component contains spatial information about the topography of the surface, whereas the loading is a quantitative representation of the topography contribution to each elemental/chemical image. The simple‐to‐use self‐modelling mixture analysis (Simplisma) method is a pure variable method that searches for the source of most differences in the data and therefore has the potential to distinguish between chemical and topographical phases in images. The mathematical background correction scheme is developed and validated by comparing results to the experimental background correction for samples with differing degrees of topography. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:XPS  photoelectron imaging  topographical background correction  multivariate image analysis  PCA  Simplisma  multicomponent rough sample  polymer blend
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号