首页 | 官方网站   微博 | 高级检索  
     


Glutaraldehyde-fixation of yeast cells: Kinetics of a model system for enzyme cytochemistry
Authors:Wilfred N Arnold
Affiliation:(1) Department of Biochemistry, University of Kansas Medical Center, 66103 Kansas City, Kansas, USA
Abstract:The kinetics of glutaraldehyde inactivation of a protoplasmic (beta-fructofuranosidase) and an extracytoplasmic (acid phosphatase) enzyme inSaccharomyces rouxii cells were studied at pH 5.5 and 30°C. The effects of glutaraldehyde concentration (0.5–3%), pH value, and temperature were surveyed by varying the fixation conditions. Cells from 1- to 10-day cultures retained 50–75% of their acid phosphatase activity and 15–24% of their beta-fructofuranosidase activity after 1-h exposures to 0.5% glutaraldehyde. The surviving beta-fructofuranosidase activity remained physically cryptic and was revealed only after further membrane perturbation with ethyl acetate. This crypticity barrier disappeared after overnight incubation of the treated cells at 4°C, with or without added glutaraldehyde, during which time the enzyme was resistant to further inactivation. The velocity ratio for raffinose versus sucrose, as substrate, decreased in treated cells, and changes inV max andK m were indicative of frank destruction of some enzyme molecules as well as modification of survivors. A comparable set of changes was also generated by treating cell-free extract with glutaraldehyde. Glutaraldehyde (0.5%) killed all yeast cells at 30°C within 5 min; at 4°C survival rates were quite high—81% after 15 min and 65% after 1 h. The bearing of these examples of enzyme inactivation, permeability barrier abolition, and structural stabilization on the general problems of yeast cytochemistry is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号