首页 | 官方网站   微博 | 高级检索  
     


Modeling Natural Convection in Copper Electrorefining: Describing Turbulence Behavior for Industrial-Sized Systems
Authors:Martin J. Leahy and M. Phillip Schwarz
Affiliation:(1) Division of Earth Sciences & Resource Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia;(2) Division of Mathematics, Informatics and Statistics, CSIRO, Clayton, Victoria, Australia
Abstract:A computational fluid dynamics (CFD) model of copper electrorefining is discussed, where natural convection flow is driven by buoyancy forces caused by gradients in copper concentration at the electrodes. We provide experimental validation of the CFD model for several cases varying in size from a small laboratory scale to large industrial scale, including one that has not been compared with a CFD model. Previously, the large-scale systems have been thought to be turbulent by some workers and modeled accordingly with k-ε type turbulence models, but others have not considered turbulence effects in their modeling. We find that the turbulence model does not predict turbulence exists; however, we analyze carefully the fluctuation statistics predicted for a transient model, finding that most cases considered do exhibit a type of turbulence, an instability related to the interaction between velocity and copper concentration fields. We provide a comparison of the extent of turbulence for various electrode heights, and gap widths, and we emphasize industrial-sized electrorefining cells.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号