首页 | 官方网站   微博 | 高级检索  
     


Curvelet-Based Snake for Multiscale Detection and Tracking of Geophysical Fluids
Authors:Ma   J. Antoniadis   A. Le Dimet   F.-X.
Affiliation:Lab. LMC-IMAG, Univ. Joseph Fourier, Grenoble;
Abstract:Detection and target tracking have an application to many scientific problems. The approach developed in this paper is motivated by the applications of detection and tracking characteristic deformable structures in geophysical fluids. We develop an integrated detection and tracking method of geophysical fluids based on a discrete curvelet representation of the information characterizing the targets. Curvelets are in some sense geometric wavelets, allowing an optimal sparse representation of two-dimensional piecewise continuous objects with C 2-singularities. The proposed approach first identifies a consistent vortex by a curvelet-based gradient-vector-flow snake and then establishes the motion correspondence of the snaxels between successive time frames by a constructed so-called semi-T or comp-T multiscale motion-estimation method based on the geometric wavelets. Furthermore, a combination of total-variation regularization and cycle-spinning techniques effectively removes false matches and improves significantly the estimation. Numerical experiments at each stage demonstrate the performance of the proposed tracking methodology for temporal oceanographic satellite image sequences corrupted by noise, with weak edges and submitted to large deformations, in comparison to conventional methods
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号