首页 | 官方网站   微博 | 高级检索  
     


Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels
Authors:Javad Mola  Bruno C De Cooman
Affiliation:1. Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 790-784, South Korea
2. Institute for Iron and Steel Technology, TU Bergakademie Freiberg, 09599, Freiberg, Germany
Abstract:Austenite was stabilized in the martensitic stainless steel grade AISI 420 by means of quenching and partitioning (Q&P) processing. The effects of quenching temperature on the microstructure and mechanical properties were investigated. The specimens processed at low quench temperatures (regime I) had a microstructure consisting of tempered martensite and retained austenite. At high quench temperatures (regime II), fresh martensite was present too. The highest austenite fraction of about 0.35 was obtained at the quench temperature delineating regimes I and II. The amount of carbon in retained austenite increased as the quench temperature decreased. The carbon level of austenite was, however, much lower than the carbon concentrations expected from full partitioning assumption. This was mainly due to the extensive cementite formation in the partitioning step. Stabilization of austenite by Q&P processing was found not to be purely chemical. Austenite stabilization was also assisted by locking, because of local carbon enrichment, of potential martensite nucleation sites in the austenite/martensite boundaries and in austenite defects. The importance of the latter stabilization mechanism increased at higher martensite fractions. According to the tensile test results, the Q&P processed specimen with the highest austenite fraction was not associated with the best combination of strength and ductility. The mechanical stability of austenite was found to increase with its carbon concentration being the highest at the lowest quench temperature. The thermal stability, on the other hand, was almost inversely proportional to the retained austenite fraction, being low at intermediate quench temperatures where the retained austenite fraction was high.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号