首页 | 官方网站   微博 | 高级检索  
     


Microstructural,dielectric, and nonlinear properties of Ca1–xCdxCu3Ti4O12 thin films
Affiliation:1. College of Physics and Electronic Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China;2. Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou, 450002, PR China
Abstract:The effects of the A-site transition from Ca2+ to Cd2+ on the microstructure, morphology, and electrical properties of Ca1–xCdxCu3Ti4O12 thin films were studied. The film surfaces are smooth, compact, and without cracks. The CaCu3Ti4O12 and CdCu3Ti4O12 films had similar morphologies and electrical properties. The grain size initially increased and subsequently decreased with the transition from Ca2+ to Cd2+ at the A site. The change in Ca sites has an obvious effect on Cu sites. The film with more copper-rich phases at the grain boundaries had the largest grain size when Ca2+ and Cd2+ equally occupied the A sites. The dielectric constant of Ca1–xCdxCu3Ti4O12 was closely related to the copper oxide secondary phase. The dielectric loss tangent and nonlinearity coefficient were associated with the compact structure, copper oxide secondary phase, copper vacancies and improved grain boundary response. The simultaneous occupancy of the A sites by Ca2+ and Cd2+ improves the dielectric and nonlinear properties of Ca1–xCdxCu3Ti4O12. Optimal dielectric properties (?r = 5238 and tan δ = 0.009 at 1 kHz) and an enhanced nonlinearity coefficient (~4.22) were simultaneously obtained for the Ca0.5Cd0.5Cu3Ti4O12 thin film. This study demonstrates that the extrinsic mechanism is the main origin of the high dielectric constant values in Ca1–xCdxCu3Ti4O12 films. The resulting films are suitable for applications in capacitors.
Keywords:Substitution  Dielectric properties  Sol–gel method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号