首页 | 官方网站   微博 | 高级检索  
     


Interfacial Microstructure Evolution Between Sn-Zn Solders and Ag Substrate During Solid-State Annealing
Authors:Chao-hong Wang  Po-yi Li  Kuan-ting Li
Affiliation:1. Department of Chemical Engineering, National Chung Cheng University, Chiayi, 62102, Taiwan
Abstract:In this study, solid-state interfacial reactions between Ag and Sn-Zn alloys with varying Zn content (0.1 wt.% to 9 wt.%) were investigated at 170°C. The reaction couples were prepared by electroplating Ag on the Sn-Zn alloy to avoid dissolution of Ag into the molten solder during soldering. The Zn content greatly influenced the reaction products and the interfacial microstructures. When the Zn content was less than 4 wt.%, Ag3Sn and AgZn layers were simultaneously formed. Notably, Zn could actively diffuse through the Ag3Sn layer and react with Ag to form the AgZn phase. With the proceeding reaction, small α-Ag particulates were produced within the AgZn phase. With 9 wt.% Zn, the dominant reactions formed Ag5Zn8 and AgZn layers. The interfacial microstructure evolved significantly with reaction time. Interface instability due to Zn depletion in the solder resulted in massive spalling of the Ag5Zn8 layer. The Ag3Sn phase was then produced next to the AgZn layer. Moreover, another reaction couple, Sn-9 wt.%Zn/Sn(15 μm)/Ag, was prepared, in which fast interdiffusion between Zn and Ag across the Sn layer was demonstrated due to the strong chemical affinity of Zn.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号