首页 | 官方网站   微博 | 高级检索  
     


Investigation of dry machining with embedded heat pipe cooling by finite element analysis and experiments
Authors:Richard Y. Chiou  Lin Lu  Jim S. J. Chen  Mark T. North
Affiliation:1. Applied Engineering Technology, Drexel University, Philadelphia, PA, 19104, USA
2. Mechanical Engineering Department, Temple University, Philadelphia, PA, 19122, USA
3. Thermacore, Inc., Lancaster, PA, 17601, USA
Abstract:This paper investigates the performance of a cutting tool embedded with a heat pipe on reducing cutting temperature and wear in machining. The temperature of a tool plays an important role in thermal distortion and the machined part’s dimensional accuracy, as well as the tool life in machining. A new embedded heat pipe technology has been developed to effectively remove the heat generated at the tool–chip interface in machining, thereby, reducing tool wear and prolonging tool life. In particular, the technique can effectively minimize pollution and contamination of the environment caused by cutting fluids, and the health problems of skin exposure and particulate inhalation in manufacturing. The ANSYS finite element analysis simulations show that the temperature near the cutting edge drops significantly with an embedded heat pipe during machining. Temperature measurements at several locations on the cutting tool insert agree with the simulation results both with and without the heat pipe. Experiments were carried out to characterize the temperature distributions when performing turning experiments using a cutting tool installed with an embedded heat pipe. The performance of the heat pipe on reducing the cutting tool temperature was further supported by the observations of cutting tool material color, chip color, and the chip radius of curvature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号