首页 | 官方网站   微博 | 高级检索  
     

氮掺杂HTi2NbO7纳米片的制备及其可见光催化性能
引用本文:孟承启,吕洪杰,董鹏玉,刘超,陈小卫,高欣,程婷,刘银,李建军,奚新国. 氮掺杂HTi2NbO7纳米片的制备及其可见光催化性能[J]. 无机化学学报, 2020, 36(9): 1707-1716
作者姓名:孟承启  吕洪杰  董鹏玉  刘超  陈小卫  高欣  程婷  刘银  李建军  奚新国
作者单位:安徽理工大学材料科学与工程学院, 淮南 232001;盐城工学院化学化工学院, 盐城 224051;盐城工学院材料科学与工程学院, 盐城 224051;江苏大学材料科学与工程学院, 镇江 212013;江苏省新型环保重点实验室, 盐城工学院, 盐城 224051
基金项目:国家自然科学基金(No.51772258)、国家重点研发计划(No.2016YFC0209202)、住房和城乡建设部科学技术项目(No.2018-K1-004)、江苏省研究生科研与实践创新计划项目(No.SJCX19_1037)、江苏省生态建材与环保装备协同创新中心暨江苏省新型环保重点实验室联合开放基金(No.JH201805)和国家级大学生创新创业训练计划项目(No.201910305012)资助。
摘    要:首先,采用高温固相法制备层状前驱体CsTi_2NbO_7,再通过与硝酸进行质子交换形成层状HTi_2NbO_7;其次,在四丁基氢氧化铵(TBAOH)中剥离层状HTi_2NbO_7以获得HTi_2NbO_7纳米片;然后与尿素混合并高温焙烧;最后成功地得到了氮掺杂的HTi_2NbO_7纳米片光催化剂。使用粉末X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射吸收光谱(UV-Vis DRS)以及N_2吸附-脱附测试等方式对所制备样品的晶体结构、形貌、比表面积、孔分布和光吸收能力等进行详细的表征。研究表明,氮掺杂后减小了HTi_2NbO_7的禁带宽度,从而使光响应范围扩展到可见光区域;掺杂的氮原子主要位于Ti_2NbO_7-薄片的间隙位置,并与氢离子化学键合;与N掺杂的层状HTi_2NbO_7相比,N掺杂的HTi_2NbO_7纳米片具有更大的比表面积和更丰富的介孔结构,这是由于钛铌酸纳米片相对松散且不规则的排列。因此,在降解罗丹明B(RhB)溶液时,N掺杂的HTi_2NbO_7纳米片比N掺杂的层状HTi_2NbO_7具有更加优异的可见光催化活性。

关 键 词:层状化合物  多相催化  电荷转移  纳米结构
收稿时间:2020-04-01
修稿时间:2020-05-07

Synthesis and Visible-Light-Driven Photocatalytic Activity of Nitrogen-Doped HTi2NbO7 Nanosheet
Affiliation:School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China;School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China;School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China;School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China;Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
Abstract:Firstly, layered CsTi2NbO7 was prepared by high temperature solid-state method, and then layered HTi2NbO7 was obtained by a proton-exchange reaction treated with HNO3 solution. Secondly, the obtained layered HTi2NbO7 was well dispersed in tetrabutylammonium hydroxide (TBAOH) solution in order to prepare HTi2NbO7 nanosheets by exfoliation reaction. Thirdly, the as-prepared HTi2NbO7 nanosheets were dried, and then mixed with urea. Finally, nitrogen-doped HTi2NbO7 nanosheet photocatalyst was successfully synthesized by heating the above mixture. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Ultraviolet-Visible diffuse reflectance absorption spectrum (UV-Vis DRS) as well as N2 adsorption-desorption measurements to characterize the crystal structure, morphology, specific surface area, pore distribution and light absorption capacity of as-prepared samples in detail. It was found that the doped nitrogen resulted in an intrinsic narrowing band-gap so as to widen light response region, and the doped nitrogen atoms were mainly located at the interstitial position of Ti2NbO7- sheets and chemically bonded with hydrogen ions. Moreover, compared with N-doped HTi2NbO7, N-doped HTi2NbO7 nanosheets had a larger specific surface area and richer mesoporous structure due to the relatively loose and irregular arrangement of the titanium niobate nanosheets. Therefore, the N-doped HTi2NbO7 nanosheets exhibited higher visible-light photocatalytic activity for degradation of RhB than that for N-doped layered HTi2NbO7.
Keywords:layered compounds  heterogeneous catalysis  charge transfer  nanostructures
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号