首页 | 官方网站   微博 | 高级检索  
     

基于拉曼光谱技术鉴别ABS废旧塑胶原料的方法研究
作者姓名:赵迎  林君峰  刘佳  谢堂堂  李晓鹏  崔飞鹏  李小佳
作者单位:钢铁研究总院 ,北京 100081;钢研纳克检测技术股份有限公司 ,北京 100094;深圳海关 ,广东 深圳 518067;钢研纳克检测技术股份有限公司 ,北京 100094
基金项目:国家重点研发计划项目(重大科学仪器设备专项2017YFF0108900,2018YFF0101200);海关总署科研项目(2019HK075)资助。
摘    要:塑胶微粒原料已渗透到人类衣食住行的方方面面,并广泛应用于能源、工业、农业、交通乃至航空航天和海洋开发等各重要领域不可或缺的材料。在利益的诱惑下,废旧塑胶的走私现象屡禁不止。我国作为塑胶原料进口大国,现有检测方法耗时长,难以实现现场检测,因此,开发一种用于现场的废旧塑胶微粒判别方法,对快速通关和海关缉私有重要意义。拉曼光谱技术具有快速、无损、样品用量小、无需前处理且适应性强等优点,已在现场快速鉴别领域得到广泛应用。在研究塑胶废旧机理的基础上,将拉曼光谱技术结合化学判别方法,应用于废旧塑胶原料识别。选取两类成分相似的实际通关塑胶原料样品,包含标准品及废旧品各160份,并对样品的拉曼光谱信息进行了采集。对比分析了两种塑胶原料的原始拉曼光谱,并对样品的拉曼光谱特征峰进行了归属分析。选取1 603 cm-1作为归一化参照峰位,进一步探究废旧塑胶的成分变化,对比统计了废旧塑胶原料及标准塑胶原料的相对峰强变化,结果表明废旧塑胶原料发生了化学老化。基于主成分分析法(PCA)对原始拉曼光谱及预处理拉曼光谱进行降维处理,结果表面预处理拉曼光谱的前2主成分空间分离度较好,通过对原始拉曼光谱数据进行背景扣除及平滑预处理,可减少荧光背景及噪声对鉴别的影响,提高鉴别的准确度。将样品一半划分为校正集用于模型建立,另一半划分为预测集用于模型验证,基于偏最小二乘判别分析(PLS-DA),建废旧塑胶原料鉴别模型,该模型对建模训练集鉴别正确率为100%,模型验证集鉴别正确率为99.06%。研究表明,基于拉曼光谱技术,结合测试数据预处理及偏最小二乘判别分析方法,可以有效地实现塑胶原料的现场、快速、准确鉴别,为开发现场检测装备及方法提供理论参考。

关 键 词:拉曼光谱  ABS塑胶  主成分分析  偏最小二乘判别法
收稿时间:2019-12-06
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号