首页 | 官方网站   微博 | 高级检索  
     


Free radicals, oxidative stress and antioxidant vitamins
Authors:R Nordmann
Affiliation:Département de Recherches Biomédicales sur l'Alcoolisme, Biomédicale des Saints-Pères, Paris.
Abstract:Free radicals having oxidizing properties are produced in vivo. The monoelectronic reduction of dioxygen generates the superoxide radical (.O2-) which, according to the experimental conditions, behaves as a reducing or an oxidizing agent. Its dismutation catalyzed by superoxide dismutases (SODs) produces hydrogen peroxide. The latter reacting with .O2- in the presence of "redox-active" iron produces highly aggressive prooxidant radicals, such as the hydroxyl radical (.OH). This production is prevented through intracellular enzymes (catalase and glutathione peroxidases) which destroy the hydrogen peroxide involved in the biosynthesis of .OH. An increase in SODs activity without parallel enhancement of the enzymes destroying H2O2 may lead to important cellular disturbances. Other enzymes acting with glutathione as substrate (especially glutathione S-transferases) contribute to the antioxidant defence. The same holds true for selenium and zinc which act mainly through their involvement in the structure of both antioxidant enzymes and nonenzymatic proteins. Another line of antioxidant defence is represented by substrates acting as chain-breaking antioxidants in destructive processes linked to prooxidant free radicals, such as lipid peroxidation. The main membranous antioxidant is alpha-tocopherol which is able to quench efficiently lipid peroxyl radicals. Its efficiency would be quickly exhausted if the tocopheryl radical formed during this reaction wouldn't be retransformed into alpha-tocopherol through the intervention of ascorbate and/or glutathione. Ubiquinol and dihydrolipoate also contribute to the membranous antioxidant defence, whereas carotenoids are mainly responsible for the prevention of the deleterious effects of singlet oxygen. An oxidative stress is apparent when the antioxidant defence is insufficient to cope with the prooxidant production.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号