首页 | 官方网站   微博 | 高级检索  
     

基于改进YOLOv3和核相关滤波算法的旋转弹目标探测算法
作者姓名:王少博  张成  苏迪  冀瑞静
作者单位:(北京理工大学 宇航学院, 北京 100081)
基金项目:国家自然科学基金项目(11532002);;装备预先研究联合基金项目(6141B012869);
摘    要:旋转弹的电视摄像头拍摄画面会产生旋转及抖动模糊,在预先侦查目标数据较少且末制导段视野目标较小的情况下,目标难以精确探测,为此提出一种基于改进YOLOv3和核相关滤波(KCF)算法的目标检测与跟踪算法,通过深度学习实现目标的自动检测。制作模拟山地打击场景的数据集,基于少量数据样本的前提,模拟不同天气、光照、运动及旋转模糊等复杂环境,完成在网络学习中数据的增强和扩充;通过在YOLOv3网络基础上添加Inception多尺度分支结构,增加网络对于目标不同尺寸的适应性,减少网络层数,更能适应对小目标的检测;在实现目标定位方法上,将目标检测与跟踪算法相融合,提出一种目标丢失判别机制,并利用弹道的速度—时间信息更新目标跟踪框尺度。仿真实验结果表明,相比原始算法,改进算法能更有效实现复杂环境下的目标检测和跟踪。

关 键 词:旋转弹  目标检测与跟踪  改进YOLOv3算法  核相关滤波算法  复杂环境  小目标  
本文献已被 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号