首页 | 官方网站   微博 | 高级检索  
     


LPA4/p2y9/GPR23 mediates rho-dependent morphological changes in a rat neuronal cell line
Authors:Yanagida Keisuke  Ishii Satoshi  Hamano Fumie  Noguchi Kyoko  Shimizu Takao
Affiliation:Department of Biochemistry and Molecular Biology, Faculty of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
Abstract:Lysophosphatidic acid (LPA) is a potent lipid mediator that evokes a variety of biological responses in many cell types via its specific G protein-coupled receptors. In particular, LPA affects cell morphology, cell survival, and cell cycle progression in neuronal cells. Recently, we identified p2y(9)/GPR23 as a novel fourth LPA receptor, LPA(4) (Noguchi, K., Ishii, S., and Shimizu, T. (2003) J. Biol. Chem. 278, 25600-25606). To assess the functions of LPA(4) in neuronal cells, we used rat neuroblastoma B103 cells that lack endogenous responses to LPA. In B103 cells stably expressing LPA(4), we observed G(q/11)-dependent calcium mobilization, but LPA did not affect adenylyl cyclase activity. In LPA(4) transfectants, LPA induced dramatic morphological changes, i.e. neurite retraction, cell aggregation, and cadherin-dependent cell adhesion, which involved Rho-mediated signaling pathways. Thus, our results demonstrated that LPA(4) as well as LPA(1) couple to G(q/11) and G(12/13), whereas LPA(4) differs from LPA(1) in that it does not couple to G(i/o). Through neurite retraction and cell aggregation, LPA(4) may play a role in neuronal development such as neurogenesis and neuronal migration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号