首页 | 官方网站   微博 | 高级检索  
     


A model for pressure loss, film thickness, and entrained fraction for gas-liquid annular flow
Authors:D Schubring  TA Shedd
Affiliation:a Visualization, Imaging, and Computation of Thermohydraulics for Reactors (VICTR) Lab, University of Florida, 202 Nuclear Science Building, P.O. Box 118300, Gainesville, FL 32611-8300, USA
b Multiphase Flow Visualization and Analysis Laboratory (MFVAL), University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706-1609, USA
Abstract:A two-component (air-water) annular flow model is presented requiring only flow rates, absolute pressure, temperature, and tube diameter. Film thicknesses (base film and wave height) are calculated from a critical film thickness model. Modeled pressure gradient is weighted by wave intermittency to compute average pressure gradient. Film flow rate and wave velocity are estimated using the universal velocity profile in the waves and a piecewise linear profile in the base film. For vertical flow, mean absolute errors for film thickness, wave velocity, and pressure gradient are 9%, 9%, and 19%, respectively. In horizontal flow, mean absolute errors for pressure gradient, base film thickness, and disturbance wave velocity are 17%, 10%, and 14%, respectively, on par with those from single-behavior models that require additional film thickness or other data as inputs.
Keywords:Annular flow  Disturbance wave  Film thickness  Pressure gradient  Two-phase flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号