首页 | 官方网站   微博 | 高级检索  
     


Room temperature NO_2-sensing properties of hexagonal tungsten oxide nanorods
Affiliation:1.School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China;2.Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract:Hexagonal WO3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The NO2-sensing performances in terms of sensor response, response/recovery times and repeatability at room temperature were optimized by varying the heat treatment temperature of WO3 nanorods. The optimized NO2 sensor (400-℃-annealed WO3 nanorods) showed an ultra-high sensor response of 3.2 and short response time of 1 s to 5-ppm NO2. In addition, the 400-℃-annealed sample exhibited more stable repeatability. Furthermore, dynamic responses measurements of annealed samples showed that all the annealed WO3 nanorods sensors presented p-type behaviors. We suppose the p-type behavior of the WO3 nanorods sensor to be that an inversion layer is formed in the space charge layer when the sensor is exposed to NO2 at room temperature.Therefore, the 400-℃-annealed WO3 nanorods sensor is one of the most energy conservation candidates to detect NO2 at room temperature.
Keywords:WO3 nanorods  thermal treatment  NO2 gas sensor  room temperature  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号