结合卷积神经网络和词语情感序列特征的中文情感分析 |
| |
作者姓名: | 陈钊 徐睿峰 桂林 陆勤 |
| |
作者单位: | 1. 哈尔滨工业大学 深圳研究生院计算机科学与技术学院,广东 深圳 518000;
2. 香港理工大学 电子计算学系,香港特别行政区 |
| |
基金项目: | 国家自然科学基金(61370165,61203378);国家863计划(2015AA015405);广东省自然科学基金(S2013010014475);深圳市孔雀计划技术创新项目(KQCX20140521144507925);深圳数字舞台表演机器人技术工程实验室([2014]1507);深圳市基础研究计划(JCYJ20150625142543470) |
| |
摘 要: | 目前基于词嵌入的卷积神经网络文本分类方法已经在情感分析研究中取得了很好的效果。此类方法主要使用基于上下文的词嵌入特征,但在词嵌入过程中通常并未考虑词语本身的情感极性,同时此类方法往往缺乏对大量人工构建情感词典等资源的有效利用。针对这些问题,该文提出了一种结合情感词典和卷积神经网络的情感分类方法,利用情感词典中的词条对文本中的词语进行抽象表示,在此基础上利用卷积神经网络提取抽象词语的序列特征,并用于情感极性分类。该文提出的相关方法在中文倾向性分析评测COAE2014数据集上取得了比目前主流的卷积神经网络以及朴素贝叶斯支持向量机更好的性能。
|
关 键 词: | 卷积神经网络 情感分析 词语情感序列特征 |
|
| 点击此处可从《中文信息学报》浏览原始摘要信息 |
|
点击此处可从《中文信息学报》下载全文 |
|