首页 | 官方网站   微博 | 高级检索  
     

类石墨烯C3N4纳米片光催化分解水制氢中的量子限域效应
引用本文:郝旭强,杨浩,靳治良,续京,敏世雄,吕功煊.类石墨烯C3N4纳米片光催化分解水制氢中的量子限域效应[J].物理化学学报,2016,32(10):2581-2592.
作者姓名:郝旭强  杨浩  靳治良  续京  敏世雄  吕功煊
作者单位:1 北方民族大学化学与化学工程学院,银川7500212 中国科学院兰州化学物理研究所,羰基合成与选择氧化国家重点实验室,兰州730000
基金项目:the National Natural Science Foundation of China(21263001,21463001,21433007)
摘    要:从层状化合物获得的纳米片是一类新型纳米结构材料,这种二维各向异性的纳米甚至亚纳米级的材料具有独特的物理化学性能,其中最好的一个例证就是从石墨烯C3N4到石墨烯C3N4纳米片的转变。通过高温氧化热刻蚀方法将体相g-C3N4剥离成g-C3N4纳米片,应用于染料敏化可见光分解水产氢,表现出了较体相g-C3N4高于2.6倍的产氢速率。通过X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、Brunauer-Emmett-Teller(BET)、荧光光谱和光电化学等表征研究了g-C3N4纳米片的结构及曙红(EY)和g-C3N4纳米片之间的电子迁移过程。热剥离后的g-C3N4纳米片具有较高的比表面积,不仅可以更为有效地吸附染料分子,还因其量子限域效应大大增强了光生电荷的分离效率和电子转移效率,改善了电子沿平面方向的传输能力以及光生载流子的寿命,从而显著提高g-C3N4纳米片的光催化产氢活性。

关 键 词:g-C3N4纳米片  染料敏化  量子限域效应  光催化  产氢  
收稿时间:2016-04-21

Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting
Xu-Qiang HAO,Hao YANG,Zhi-Liang JIN,Jing XU,Shi-Xiong MIN,Gong-Xuan Lü.Quantum Confinement Effect of Graphene-Like C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting[J].Acta Physico-Chimica Sinica,2016,32(10):2581-2592.
Authors:Xu-Qiang HAO  Hao YANG  Zhi-Liang JIN  Jing XU  Shi-Xiong MIN  Gong-Xuan Lü
Affiliation:1. School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021, P. R. China;2. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
Abstract:Nanosheet materials obtained from laminar compounds are new two-dimensional anisotropic nanomaterials that can even reach the sub-nanometer scale. These materials possess unique physical and chemical properties. An example of such a nanosheet materials is graphitic carbon nitride (g-C3N4) nanosheets transformed from bulk g-C3N4. Here, g-C3N4 nanosheets were prepared from bulk g-C3N4 by high-temperature thermal oxidation. The photocatalytic activity of eosin (EY)-sensitized g-C3N4 nanosheets for hydrogen evolution was about 2.6 times higher than that of bulk g-C3N4. The structure of the g-C3N4 nanosheets and process of electron transfer between EY and the g-C3N4 nanosheets were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, fluorescence spectroscopy, and photoelectrochemical measurements. The g-C3N4 nanosheets possessed high specific surface area. The g-C3N4 nanosheets not only effectively absorbed dye molecules, but also enhanced the separation and electron transport efficiencies of photogenerated charges because of their quantum confinement effect. The quantum confinement effect of g-C3N4 nanosheets widened their bandgap, improved electron transfer ability along the in-plane direction, and lengthened the lifetime of photoexcited charge carriers. As a result, the photocatalytic activity of the g-C3N4 nanosheets was improved compared with that of bulk g-C3N4.
Keywords:g-C3N4 nanosheet  Dye-sensitization  Quantum confinement effect  Photocatalysis  Hydrogen evolution  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号