首页 | 官方网站   微博 | 高级检索  
     


Some mathematical aspects of Anderson localization: boundary effect,multimodality, and bifurcation
Authors:Chen Jia  Ziqi Liu  Zhimin Zhang
Affiliation:1.Applied and Computational Mathematics Division, Beijing Computational Science Research Center, Beijing 100193, China;2.Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China;3.Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States of America
Abstract:Anderson localization is a famous wave phenomenon that describes the absence of diffusion of waves in a disordered medium. Here we generalize the landscape theory of Anderson localization to general elliptic operators and complex boundary conditions using a probabilistic approach, and further investigate some mathematical aspects of Anderson localization that are rarely discussed before. First, we observe that under the Neumann boundary condition, the low energy quantum states are localized on the boundary of the domain with high probability. We provide a detailed explanation of this phenomenon using the concept of extended subregions and obtain an analytical expression of this probability in the one-dimensional case. Second, we find that the quantum states may be localized in multiple different subregions with high probability in the one-dimensional case and we derive an explicit expression of this probability for various boundary conditions. Finally, we examine a bifurcation phenomenon of the localization subregion as the strength of disorder varies. The critical threshold of bifurcation is analytically computed based on a toy model and the dependence of the critical threshold on model parameters is analyzed.
Keywords:landscape  spectrum  eigenvalue  eigenmode  eigenfunction  elliptic operator  Schrödinger operator  confinement  
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号