首页 | 官方网站   微博 | 高级检索  
     


Exergoeconomic analysis and optimization of basic,dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study
Affiliation:1. School of Economics and Management, North China Electric Power University, Beijing 102206, China;2. School of Natural and Built Environments, University of South Australia, Adelaide 5001, Australia;1. Division of Engineering, Saint Mary''s University, Halifax, NS, B3H 3C3, Canada;2. Department of Electrical Engineering, Royal Military College, Kingston, ON, K7K 7B4, Canada;3. Department of Electrical Engineering, University of Nevada, Reno, USA;1. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001, Australia;2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China;1. School of Energy and Environment, Southeast University, Nanjing 210096, China;2. Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, Southeast University, Nanjing 210096, China;3. Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, Southeast University, Nanjing 210096, China;1. Department of Food Engineering, URI – Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS 99700-000, Brazil;2. Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, CEP 88800-000 Florianópolis, SC, Brazil;3. LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil;4. Federal University of Fronteira Sul, Erechim, Av. Dom João Hoffmann, Erechim 99700-000, Brazil;5. Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900, Brazil
Abstract:In present work, the basic, dual-pressure and dual-fluid ORCs and Kalina cycle for power generation from the geothermal fluid reservoir are compared from energy, exergy and exergoeconomic viewpoints. To do so, first thermodynamic models are applied to the considered cycles; then by developing cost flow rate balance and auxiliary equations using SPECO method for all components, the cost flow rate and unit cost of exergy for each stream are calculated. The results show that the turbine in basic and Kalina cycles and low pressure turbine in dual-pressure and dual-fluid ORCs have the maximum value of sum of total cost rate associated with exergy destruction and total capital investment cost rate. Thus, more attention should be paid for these components from the exergoeconomic viewpoint. The cycles are optimized to obtain maximum produced electrical power in the cycles as well as minimum unit cost of produced power. The optimization results show that among the considered cycles, dual-pressure ORC has the maximum value of produced electrical power. This is 15.22%, 35.09% and 43.48% more than the corresponding values for the basic ORC, dual-fluid ORC and Kalina cycle, respectively in optimal condition. Also Kalina cycle has the minimum value of unit cost of power produced and its value in optimum state is 26.23%%, 52.09% and 66.74% less than the corresponding values for the basic ORC, dual-pressure ORC and dual-fluid ORC, respectively in optimal condition. Finally a parametric study is carried out to assess the effects on thermodynamic and exergoeconomic parameters of the considered cycles of operating pressures and ammonia mass concentration.
Keywords:Exergoeconomics  ORC  Kalina  Geothermal  Dual-pressure  Dual-fluid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号