首页 | 官方网站   微博 | 高级检索  
     


Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Affiliation:1.School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;2.School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract:The N2O radicals in-situ treatment on gate region has been employed to improve device performance of recessed-gate AlGaN/GaN high-electron-mobility transistors (HEMTs). The samples after gate recess etching were treated by N2O radicals without physical bombardment. After in-situ treatment (IST) processing, the gate leakage currents decreased by more than one order of magnitude compared to the sample without IST. The fabricated HEMTs with the IST process show a low reverse gate current of 10-9 A/mm, high on/off current ratio of 108, and high fT×Lg of 13.44 GHz· μm. A transmission electron microscope (TEM) imaging illustrates an oxide layer with a thickness of 1.8 nm exists at the AlGaN surface. X-ray photoelectron spectroscopy (XPS) measurement shows that the content of the Al-O and Ga-O bonds elevated after IST, indicating that the Al-N and Ga-N bonds on the AlGaN surface were broken and meanwhile the Al-O and Ga-O bonds formed. The oxide formed by a chemical reaction between radicals and the surface of the AlGaN barrier layer is responsible for improved device characteristics.
Keywords:AlGaN/GaN  high-electron-mobility transistors  low gate leakage  radio frequency  radical treatment  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号