首页 | 官方网站   微博 | 高级检索  
     


Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Affiliation:1.Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing 100871, China;2.State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;3.Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract:A gated Hall-bar device is made from an epitaxially grown, free-standing InSb nanosheet on a hexagonal boron nitride (hBN) dielectric/graphite gate structure and the electron transport properties in the InSb nanosheet are studied by gate-transfer characteristic and magnetotransport measurements at low temperatures. The measurements show that the carriers in the InSb nanosheet are of electrons and the carrier density in the nanosheet can be highly efficiently tuned by the graphite gate. The mobility of the electrons in the InSb nanosheet is extracted from low-field magneotransport measurements and a value of the mobility exceeding $\sim 1.8\times10^4$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ is found. High-field magentotransport measurements show well-defined Shubnikov-de Haas (SdH) oscillations in the longitudinal resistance of the InSb nanosheet. Temperature-dependent measurements of the SdH oscillations are carried out and key transport parameters, including the electron effective mass $m^{\ast }\sim 0.028 m_{0}$ and the quantum lifetime $\tau \sim 0.046 $ ps, in the InSb nanosheet are extracted. It is for the first time that such experimental measurements have been reported for a free-standing InSb nanosheet and the results obtained indicate that InSb nanosheet/hBN/graphite gate structures can be used to develop advanced quantum devices for novel physics studies and for quantum technology applications.
Keywords:InSb nanosheet  Shubnikov-de Haas (SdH) oscillations  electron effective mass  quantum lifetime  
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号