首页 | 官方网站   微博 | 高级检索  
     

青藏高原达则错近1000年来生态系统变化及可能机制
引用本文:李秀美,侯居峙,王明达,徐磊. 青藏高原达则错近1000年来生态系统变化及可能机制[J]. 湖泊科学, 2021, 33(4): 1276-1288
作者姓名:李秀美  侯居峙  王明达  徐磊
作者单位:信阳师范学院地理科学学院/河南省水土环境污染协同防治重点实验室/豫南岩矿宝玉石鉴定及加工中心,信阳464000;中国科学院青藏高原研究所,北京100101;辽宁师范大学地理科学学院,大连116029;中国水产科学研究院南海水产研究所,广州510300
基金项目:国家自然科学基金项目(41901105)和信阳师范学院“南湖学者奖励计划”青年项目联合资助.
摘    要:在全球变化的背景下,厘清湖泊生态系统对气候环境以及人类活动的响应机制对制定社会的适应政策非常重要.目前的研究手段如现场观测和围隔实验等可以很好地揭示湖泊生态系统在有观测记录以来的演替和变化过程,但是不能提供历史时期湖泊生态系统的变化及其对气候环境变化和人类活动的响应.古湖沼学可以为探讨湖泊生态系统的长期变化及其对气候环...

关 键 词:青藏高原  达则错  古生态  气候变化  人类活动
收稿时间:2020-09-12
修稿时间:2020-10-30

Ecolosystem changes and possible mechanisms of Dagze Co in the Tibetan Plateau during the past 1000 years
Li Xiumei,Hou Juzhi,Wang Mingd,Xu Lei. Ecolosystem changes and possible mechanisms of Dagze Co in the Tibetan Plateau during the past 1000 years[J]. Journal of Lake Science, 2021, 33(4): 1276-1288
Authors:Li Xiumei  Hou Juzhi  Wang Mingd  Xu Lei
Affiliation:School of Geographic Sciences/Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution/Southern Henan Center for Mineral Rock and Gem-Jade Identification and Processing, Xinyang Normal University, Xinyang 464000, P. R. China;Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, P. R. China;School of Geography, Liaoning Normal University, Dalian 116029, P. R. China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, P. R. China
Abstract:Understanding the evolution of the lake ecosystem and their response to climate change and human activities on the long-term scale is important for making social adaptation policies. Current research methods, such as in-situ observations and enclosure experiment, can well reveal the succession and change process of lake ecosystem during the past few decades, but cannot provide the change of lake ecosystem or its response to climate change and human activities in the historical period. Paleolimnology can provide valuable information for the study of long-term changes of lake ecosystem and its response to climate and environment changes. Here, we took Dagze Co, a fishless lake in the central Tibetan Plateau as the research object. Firstly, Daphnia tibetana remains abundance, and total alkenone content in the lake sediment cores were analysed to reconstruct the plankton records of the past 1000 years. Then, total nitrogen, total phosphorus and total organic carbon were analysed to reconstruct the nutrients and organic matter records of the lake during the past 1000 years. Lastly, paleotemperature record reconstructed by the unsaturation index of long-chain alkenones in the sediment core of Dagze Co obtained in previous work were combined to study the ecosystem changes and their response mechanisms to the evolution of climate and environment in the past 1000 years. The results show that the lake ecosystem, especially lake productivity, has significant changes under the influence of natural conditions and human activities. Under the natural conditions, the higher primary and secondary productivity of the lake occurs when the temperature is lower, and the nutrient content of the lake is higher. However, in the past 150 years, the lake environment was significantly affected by human activities, and lake productivity changed accordingly. The higher lake productivity occurred in the period of high temperature, which was mainly controlled by the nutrient element content brought by human activities. The results show that the lake ecosystem has changed significantly under the influence of human activities.
Keywords:Tibetan Plateau  Dagze Co  paleoecological  climate change  human activity
本文献已被 万方数据 等数据库收录!
点击此处可从《湖泊科学》浏览原始摘要信息
点击此处可从《湖泊科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号