首页 | 官方网站   微博 | 高级检索  
     


Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes
Authors:Hanasaki Itsuo  Nakatani Akihiro
Affiliation:Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. hanasaki@md.ams.eng.osaka-u.ac.jp
Abstract:We have investigated the density and temperature dependences of microscopic structure and hydrogen bond dynamics of water inside carbon nanotubes (CNTs) using molecular dynamics simulation. The CNTs are treated as rigid, and smoothly truncated extended simple point charge water model is adopted. The results show that as the overall density increases, the atomic density profiles of water inside CNTs become sharper, the peaks shift closer to the wall, and a new peak of hydrogen atomic density appears between the first (outermost) and second layer. The intermittent hydrogen bond correlation function C(HB)(t) of water inside CNTs decays slower than that of bulk water, and the rate of decay decreases as the tube diameter decreases. C(HB)(t) clearly decays more slowly for the first layer of water than for other regions inside CNTs. The C(HB)(t) of the interlayer hydrogen bonds decays faster than those of the other regions and even faster than that of the bulk water. On the other hand, the hydrogen bond lifetimes of the first layer are shorter than those of the inner layer(s). Interlayer hydrogen bond lifetimes are clearly shorter than those of the constituent layers. As a whole, the hydrogen bond lifetimes of water inside CNTs are shorter than those of bulk water, while the relaxation of C(HB)(t) is slower for the confined water than for bulk water. In other words, hydrogen bonds of water inside CNTs break more easily than those of bulk water, but the water molecules remain in each other's vicinity and can easily reform the bonds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号