首页 | 官方网站   微博 | 高级检索  
     


Design and development for amelioration of primary water flow standard and calibration systems
Affiliation:1. CSIR-National Physical Laboratory, New Delhi, 110012, India;2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
Abstract:The present study outlines the efforts made to improve national primary water flow standards and calibration systems through design and development. The facility has been designed and developed in accordance with ISO 4185 standard in the flow range 0.03 m3/h to 650 m3/h to calibrate various types of flow meters up to DN200 (Nominal diameter) using 12 kg, 300 kg, 3000 kg, and 6000 kg weighing systems. In the flow range up to 530 m3/h, the expanded uncertainty in flow meter calibration in totalized mode is found to be ±0.01% to ±0.025% (k = 2), whereas it is ±(0.03–0.05) % (k = 2) up to DN200 size (test rigs) for mass flow rate (MFR) and volume flow rate (VFR) in the flow range 0.1 m3/h to 650 m3/h. The measurement uncertainty achieved is comparable to that of state-of-the-art water flow measurement capabilities available at numerous National Metrology Institutes (NMIs). Thus, the present designed and developed system at CSIR-National Physical Laboratory (CSIR-NPL) is a solution to maintain traceability to the users and industries.
Keywords:Fluid  Flow rate  Metrology  Measurement uncertainty  Calibration  Diverter timing error
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号