首页 | 官方网站   微博 | 高级检索  
     


Lane-change detection using a computational driver model
Authors:Salvucci Dario D  Mandalia Hiren M  Kuge Nobuyuki  Yamamura Tomohiro
Affiliation:Department of Computer Science, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA. salvucci@cs.drexel.edu
Abstract:OBJECTIVE: This paper introduces a robust, real-time system for detecting driver lane changes. Background: As intelligent transportation systems evolve to assist drivers in their intended behaviors, the systems have demonstrated a need for methods of inferring driver intentions and detecting intended maneuvers. METHOD: Using a "model tracing" methodology, our system simulates a set of possible driver intentions and their resulting behaviors using a simplification of a previously validated computational model of driver behavior. The system compares the model's simulated behavior with a driver's actual observed behavior and thus continually infers the driver's unobservable intentions from her or his observable actions. RESULTS: For data collected in a driving simulator, the system detects 82% of lane changes within 0.5 s of maneuver onset (assuming a 5% false alarm rate), 93% within 1 s, and 95% before the vehicle moves one fourth of the lane width laterally. For data collected from an instrumented vehicle, the system detects 61% within 0.5 s, 77% within 1 s, and 84% before the vehicle moves one-fourth of the lane width laterally. CONCLUSION: The model-tracing system is the first system to demonstrate high sample-by-sample accuracy at low false alarm rates as well as high accuracy over the course of a lane change with respect to time and lateral movement. APPLICATION: By providing robust real-time detection of driver lane changes, the system shows good promise for incorporation into the next generation of intelligent transportation systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号