首页 | 官方网站   微博 | 高级检索  
     


A constitutive model of cold drawing in polycarbonates
Affiliation:1. LAMIH UMR CNRS/UVHC 8201, UVHC Le Mont Houy, 59313 Valenciennes Cedex 9, France;2. National Engineering School of Sfax (ENIS), L2MP, B.P. W3038, Sfax, Tunisia;3. University of Tunis El Manar, ENIT, MAI (LR11ES19), 1002 Tunis, Tunisia
Abstract:This paper presents a set of constitutive equations to model cold-drawing (necking) in polycarbonates (PC). The model is based on a representation of cold drawing as a double glass transition, i.e., a transition from a glass into a rubbery state, when a certain yield surface in the stress space is reached, and a transition back to the glassy state upon unloading or when a certain molecular orientation (draw ratio) is achieved. The stretching process in the rubbery state is modeled by a hyperelastic extension of the J2-flow theory to the finite strain range. An appropriate yield surface and an associative flow rule (defined via the Kuhn–Tucker optimality conditions) are presented to simulate this process in polycarbonates. The isochoric constraint during double glass transition is treated via an exact multiplicative decomposition of the deformation gradient into volume preserving and spherical parts. Numerical constitutive integration algorithm is based on an operator splitting technique where constraint/consistency during inelastic deformation is enforced via return mapping algorithm. Numerical results are presented to demonstrate the correspondence with the experimental data.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号