首页 | 官方网站   微博 | 高级检索  
     


Using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) Technique for the On-Line Detection of Pollen Grains
Authors:David J O’Connor  David A Healy  Stig Hellebust  Jeroen T M Buters  John R Sodeau
Affiliation:1. Department of Chemistry and Environmental Research Institute , University College Cork , Cork , Ireland;2. ZAUM—Center of Allergy and Environment, Helmholtz Zentrum München/Technische , Universit?t München , Munich , Germany
Abstract:Primary biological aerosol particles (PBAP) such as pollen and fungal spores can induce allergenic responses and affect health in general. Conditions such as allergic rhinitis (hay fever) and asthma have been related to pollen concentrations. Likewise some pollen have been shown to induce ice nucleation and cloud condensation at higher temperatures than those associated with some chemical species, thereby affecting planet Earth's albedo and overall radiative balance. Hence, the near real-time (on-line) monitoring of airborne pollen and other PBAP using a variety of spectroscopic and light scattering techniques represents an area of growing development and consequence.

In this study, two separate field campaigns (one at a rural site in Ireland and the other at an urbanized location in Germany) were performed to detect and quantify pollen releases using a novel on-line fluorescence spectrometer (WIBS-4). The results were compared with results obtained using more traditional Hirst-type impactors. Size, “shape,” and fluorescence characteristics of ambient particles were used to determine the concentrations and identity of the PBAP likely to be pollen grains.

The concentration results obtained for both methodologies at both the Irish and German sites correlated very well, with R 2 values >0.9 determined for both campaigns. Furthermore, the sizing data available from the WIBS-4 approach employed in Ireland indicated that pollen grains can be identified in appropriate conditions. WIBS-4 measurements of Yew pollen both in the laboratory and at the rural site indicated almost identical size ranges of 25 to 27 μm. Yew pollen is generally reported to be in this range, but the measurements reported here are the first of their type providing data on the size of in-flight Yew pollen.

Copyright 2014 American Association for Aerosol Research

Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号