首页 | 官方网站   微博 | 高级检索  
     


Characteristics of a continuous Si-Ti-C-O fibre with low oxygen content using an organometallic polymer precursor
Authors:Masaki Shibuya  Takemi Yamamura
Affiliation:(1) Ube Research Laboratory, Corporate Research and Development, Ube Industries, Ltd., 1978-5 Kogushi, Ube-city, 755 Yamaguchi-ken, Japan
Abstract:A continuous Si-Ti-C-O fibre with 12 wt% oxygen content, which is lower than the usual 18 wt% found in the normal fibres, was synthesized by using polytitanocarbosilane which has fewer Si-Si bonds than the usual precursor polymer. The density, tensile strength, tensile modulus and thermal conductivity were found to be 2.37 g cm–3, 3.4±0.3 GPa, 190±10 GPa and 1.40 W m–1 K–1, respectively. Amongst these properties, the tensile modulus was improved by 20 GPa and the thermal conductivity had a higher value in comparison with that of the ordinary Si-Ti-C-O fibre with 18 wt% oxygen content. The Si-Ti-C-O fibre with a 12 wt% oxygen content has a better heat resistance above 1400 °C in an argon atmosphere and 1300 °C in air, than the usual fibre. About 60 and 40% of its tensile strength at room temperature were retained in air at respectively, 1500 and 1600 °C. This improved ceramic fibre is considered to be useful as a reinforcing material for advanced composites such as high-temperature ceramic matrix composites and metal matrix composites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号