首页 | 官方网站   微博 | 高级检索  
     


Thermally Stable Two‐Dimensional Hexagonal Mesoporous Nanocrystalline Anatase,Meso‐nc‐TiO2: Bulk and Crack‐Free Thin Film Morphologies
Authors:S.&#x  Y. Choi,M. Mamak,N. Coombs,N. Chopra,G.&#x  A. Ozin
Affiliation:S. Y. Choi,M. Mamak,N. Coombs,N. Chopra,G. A. Ozin
Abstract:Herein a novel synthetic route is described for the production of thermally stable, structurally well‐defined two‐dimensional (2D) hexagonal mesoporous nanocrystalline anatase (meso‐nc‐TiO2), with a large pore diameter, narrow pore‐size distribution, high surface area, and robust inorganic walls comprised of nanocrystalline anatase. The synthetic approach involves the evaporation‐induced co‐assembly of a non‐ionic amphiphilic triblock‐copolymer template and titanium tetraethoxide, but with a pivotal change in the main solvent of the system, where the commonly used ethanol is replaced with 1‐butanol. This seemingly minor modification in solvent type from ethanol to 1‐butanol turns out to be the key synthetic strategy for achieving a robust, structurally well‐ordered meso‐nc‐TiO2 material in the form of either thick or thin films. The beneficial “solvent” effect originates from the higher hydrophobicity of 1‐butanol than ethanol, enhancing microphase separation and templating, lower critical micelle concentration of the template in 1‐butanol, and the ability to increase the relative concentration of the inorganic precursor to template in the co‐assembly synthesis. Moreover, thin films with dimensions of several centimeters that are devoid of cracks down to the length scale of the mesostructure itself, having high porosity, well‐defined mesostructural features, and semi‐crystalline pore walls were straightforwardly and reproducibly obtained as a result of the physicochemical property advantages of 1‐butanol over ethanol within our synthesis scheme.
Keywords:Mesoporous materials  Mesostructured materials  Self‐assembly  Template‐directed assembly  Thin films  Titania
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号